Cascade Directive
With the @cascade
directive, nodes that don’t have all predicates specified in the query are removed. This can be useful in cases where some filter was applied or if nodes might not have all listed predicates.
Query Example: Harry Potter movies, with each actor and characters played. With @cascade
, any character not played by an actor called Warwick is removed, as is any Harry Potter movie without any actors called Warwick. Without @cascade
, every character is returned, but only those played by actors called Warwick also have the actor name.
{
HP(func: allofterms(name@en, "Harry Potter")) @cascade {
name@en
starring{
performance.character {
name@en
}
performance.actor @filter(allofterms(name@en, "Warwick")){
name@en
}
}
}
}
curl -H "Content-Type: application/dql" localhost:8080/query -XPOST -d '
blahblah' | python -m json.tool | less
package main
import (
"context"
"flag"
"fmt"
"log"
"github.com/dgraph-io/dgo/v2"
"github.com/dgraph-io/dgo/v2/protos/api"
"google.golang.org/grpc"
)
var (
dgraph = flag.String("d", "127.0.0.1:9080", "Dgraph Alpha address")
)
func main() {
flag.Parse()
conn, err := grpc.Dial(*dgraph, grpc.WithInsecure())
if err != nil {
log.Fatal(err)
}
defer conn.Close()
dg := dgo.NewDgraphClient(api.NewDgraphClient(conn))
resp, err := dg.NewTxn().Query(context.Background(), `blahblah`)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Response: %s\n", resp.Json)
}
import io.dgraph.DgraphClient;
import io.dgraph.DgraphGrpc;
import io.dgraph.DgraphGrpc.DgraphStub;
import io.dgraph.DgraphProto.Response;
import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import java.util.Map;
public class App {
public static void main(final String[] args) {
ManagedChannel channel =
ManagedChannelBuilder.forAddress("localhost", 9080).usePlaintext(true).build();
DgraphStub stub = DgraphGrpc.newStub(channel);
DgraphClient dgraphClient = new DgraphClient(stub);
String query = "blahblah";
Response res = dgraphClient.newTransaction().query(query);
System.out.printf("Response: %s", res.getJson().toStringUtf8());
}
}
import pydgraph
import json
def main():
client_stub = pydgraph.DgraphClientStub("localhost:9080")
client = pydgraph.DgraphClient(client_stub)
query = """blahblah"""
res = client.txn(read_only=True).query(query)
print('Response: {}'.format(json.loads(res.json)))
client_stub.close()
if __name__ == '__main__':
try:
main()
except Exception as e:
print('Error: {}'.format(e))
const dgraph = require("dgraph-js");
const grpc = require("grpc");
async function main() {
const clientStub = new dgraph.DgraphClientStub("localhost:9080", grpc.credentials.createInsecure());
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.getJson()));
clientStub.close();
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
const dgraph = require("dgraph-js-http");
async function main() {
const clientStub = new dgraph.DgraphClientStub("http://localhost:8080");
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.data));
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
You can apply @cascade
on inner query blocks as well.
{
HP(func: allofterms(name@en, "Harry Potter")) {
name@en
genre {
name@en
}
starring @cascade {
performance.character {
name@en
}
performance.actor @filter(allofterms(name@en, "Warwick")){
name@en
}
}
}
}
curl -H "Content-Type: application/dql" localhost:8080/query -XPOST -d '
blahblah' | python -m json.tool | less
package main
import (
"context"
"flag"
"fmt"
"log"
"github.com/dgraph-io/dgo/v2"
"github.com/dgraph-io/dgo/v2/protos/api"
"google.golang.org/grpc"
)
var (
dgraph = flag.String("d", "127.0.0.1:9080", "Dgraph Alpha address")
)
func main() {
flag.Parse()
conn, err := grpc.Dial(*dgraph, grpc.WithInsecure())
if err != nil {
log.Fatal(err)
}
defer conn.Close()
dg := dgo.NewDgraphClient(api.NewDgraphClient(conn))
resp, err := dg.NewTxn().Query(context.Background(), `blahblah`)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Response: %s\n", resp.Json)
}
import io.dgraph.DgraphClient;
import io.dgraph.DgraphGrpc;
import io.dgraph.DgraphGrpc.DgraphStub;
import io.dgraph.DgraphProto.Response;
import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import java.util.Map;
public class App {
public static void main(final String[] args) {
ManagedChannel channel =
ManagedChannelBuilder.forAddress("localhost", 9080).usePlaintext(true).build();
DgraphStub stub = DgraphGrpc.newStub(channel);
DgraphClient dgraphClient = new DgraphClient(stub);
String query = "blahblah";
Response res = dgraphClient.newTransaction().query(query);
System.out.printf("Response: %s", res.getJson().toStringUtf8());
}
}
import pydgraph
import json
def main():
client_stub = pydgraph.DgraphClientStub("localhost:9080")
client = pydgraph.DgraphClient(client_stub)
query = """blahblah"""
res = client.txn(read_only=True).query(query)
print('Response: {}'.format(json.loads(res.json)))
client_stub.close()
if __name__ == '__main__':
try:
main()
except Exception as e:
print('Error: {}'.format(e))
const dgraph = require("dgraph-js");
const grpc = require("grpc");
async function main() {
const clientStub = new dgraph.DgraphClientStub("localhost:9080", grpc.credentials.createInsecure());
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.getJson()));
clientStub.close();
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
const dgraph = require("dgraph-js-http");
async function main() {
const clientStub = new dgraph.DgraphClientStub("http://localhost:8080");
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.data));
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
Parameterized @cascade
The @cascade
directive can optionally take a list of fields as an argument.
This changes the default behavior, considering only the supplied fields as mandatory instead of all the fields for a type.
Listed fields are automatically cascaded as a required argument to nested selection sets.
A parameterized cascade works on levels (e.g. on the root function or on lower levels), so
you need to specify @cascade(param)
on the exact level where you want it to be applied.
@cascade(predicate)
is that the predicate needs to be in the query at the same level @cascade
is.
Take the following query as an example:
{
nodes(func: allofterms(name@en, "jones indiana")) {
name@en
genre @filter(anyofterms(name@en, "action adventure")) {
name@en
}
produced_by {
name@en
}
}
}
curl -H "Content-Type: application/dql" localhost:8080/query -XPOST -d '
blahblah' | python -m json.tool | less
package main
import (
"context"
"flag"
"fmt"
"log"
"github.com/dgraph-io/dgo/v2"
"github.com/dgraph-io/dgo/v2/protos/api"
"google.golang.org/grpc"
)
var (
dgraph = flag.String("d", "127.0.0.1:9080", "Dgraph Alpha address")
)
func main() {
flag.Parse()
conn, err := grpc.Dial(*dgraph, grpc.WithInsecure())
if err != nil {
log.Fatal(err)
}
defer conn.Close()
dg := dgo.NewDgraphClient(api.NewDgraphClient(conn))
resp, err := dg.NewTxn().Query(context.Background(), `blahblah`)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Response: %s\n", resp.Json)
}
import io.dgraph.DgraphClient;
import io.dgraph.DgraphGrpc;
import io.dgraph.DgraphGrpc.DgraphStub;
import io.dgraph.DgraphProto.Response;
import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import java.util.Map;
public class App {
public static void main(final String[] args) {
ManagedChannel channel =
ManagedChannelBuilder.forAddress("localhost", 9080).usePlaintext(true).build();
DgraphStub stub = DgraphGrpc.newStub(channel);
DgraphClient dgraphClient = new DgraphClient(stub);
String query = "blahblah";
Response res = dgraphClient.newTransaction().query(query);
System.out.printf("Response: %s", res.getJson().toStringUtf8());
}
}
import pydgraph
import json
def main():
client_stub = pydgraph.DgraphClientStub("localhost:9080")
client = pydgraph.DgraphClient(client_stub)
query = """blahblah"""
res = client.txn(read_only=True).query(query)
print('Response: {}'.format(json.loads(res.json)))
client_stub.close()
if __name__ == '__main__':
try:
main()
except Exception as e:
print('Error: {}'.format(e))
const dgraph = require("dgraph-js");
const grpc = require("grpc");
async function main() {
const clientStub = new dgraph.DgraphClientStub("localhost:9080", grpc.credentials.createInsecure());
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.getJson()));
clientStub.close();
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
const dgraph = require("dgraph-js-http");
async function main() {
const clientStub = new dgraph.DgraphClientStub("http://localhost:8080");
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.data));
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
This query gets nodes that have all the terms “jones indiana” and then traverses to genre
and produced_by
.
It also adds an additional filter for genre
, to only get the ones that either have “action” or “adventure” in the name.
The results include nodes that have no genre
and nodes that have no genre
and no producer
.
If you apply a regular @cascade
without a parameter, you’ll lose the ones that had genre
but no producer
.
To get the nodes that have the traversed genre
but possibly not produced_by
, you can parameterize the cascade:
{
nodes(func: allofterms(name@en, "jones indiana")) @cascade(genre) {
name@en
genre @filter(anyofterms(name@en, "action adventure")) {
name@en
}
produced_by {
name@en
}
written_by {
name@en
}
}
}
curl -H "Content-Type: application/dql" localhost:8080/query -XPOST -d '
blahblah' | python -m json.tool | less
package main
import (
"context"
"flag"
"fmt"
"log"
"github.com/dgraph-io/dgo/v2"
"github.com/dgraph-io/dgo/v2/protos/api"
"google.golang.org/grpc"
)
var (
dgraph = flag.String("d", "127.0.0.1:9080", "Dgraph Alpha address")
)
func main() {
flag.Parse()
conn, err := grpc.Dial(*dgraph, grpc.WithInsecure())
if err != nil {
log.Fatal(err)
}
defer conn.Close()
dg := dgo.NewDgraphClient(api.NewDgraphClient(conn))
resp, err := dg.NewTxn().Query(context.Background(), `blahblah`)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Response: %s\n", resp.Json)
}
import io.dgraph.DgraphClient;
import io.dgraph.DgraphGrpc;
import io.dgraph.DgraphGrpc.DgraphStub;
import io.dgraph.DgraphProto.Response;
import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import java.util.Map;
public class App {
public static void main(final String[] args) {
ManagedChannel channel =
ManagedChannelBuilder.forAddress("localhost", 9080).usePlaintext(true).build();
DgraphStub stub = DgraphGrpc.newStub(channel);
DgraphClient dgraphClient = new DgraphClient(stub);
String query = "blahblah";
Response res = dgraphClient.newTransaction().query(query);
System.out.printf("Response: %s", res.getJson().toStringUtf8());
}
}
import pydgraph
import json
def main():
client_stub = pydgraph.DgraphClientStub("localhost:9080")
client = pydgraph.DgraphClient(client_stub)
query = """blahblah"""
res = client.txn(read_only=True).query(query)
print('Response: {}'.format(json.loads(res.json)))
client_stub.close()
if __name__ == '__main__':
try:
main()
except Exception as e:
print('Error: {}'.format(e))
const dgraph = require("dgraph-js");
const grpc = require("grpc");
async function main() {
const clientStub = new dgraph.DgraphClientStub("localhost:9080", grpc.credentials.createInsecure());
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.getJson()));
clientStub.close();
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
const dgraph = require("dgraph-js-http");
async function main() {
const clientStub = new dgraph.DgraphClientStub("http://localhost:8080");
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.data));
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
If you want to check for multiple fields, just comma separate them. For example, to cascade over produced_by
and written_by
:
{
nodes(func: allofterms(name@en, "jones indiana")) @cascade(produced_by,written_by) {
name@en
genre @filter(anyofterms(name@en, "action adventure")) {
name@en
}
produced_by {
name@en
}
written_by {
name@en
}
}
}
curl -H "Content-Type: application/dql" localhost:8080/query -XPOST -d '
blahblah' | python -m json.tool | less
package main
import (
"context"
"flag"
"fmt"
"log"
"github.com/dgraph-io/dgo/v2"
"github.com/dgraph-io/dgo/v2/protos/api"
"google.golang.org/grpc"
)
var (
dgraph = flag.String("d", "127.0.0.1:9080", "Dgraph Alpha address")
)
func main() {
flag.Parse()
conn, err := grpc.Dial(*dgraph, grpc.WithInsecure())
if err != nil {
log.Fatal(err)
}
defer conn.Close()
dg := dgo.NewDgraphClient(api.NewDgraphClient(conn))
resp, err := dg.NewTxn().Query(context.Background(), `blahblah`)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Response: %s\n", resp.Json)
}
import io.dgraph.DgraphClient;
import io.dgraph.DgraphGrpc;
import io.dgraph.DgraphGrpc.DgraphStub;
import io.dgraph.DgraphProto.Response;
import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import java.util.Map;
public class App {
public static void main(final String[] args) {
ManagedChannel channel =
ManagedChannelBuilder.forAddress("localhost", 9080).usePlaintext(true).build();
DgraphStub stub = DgraphGrpc.newStub(channel);
DgraphClient dgraphClient = new DgraphClient(stub);
String query = "blahblah";
Response res = dgraphClient.newTransaction().query(query);
System.out.printf("Response: %s", res.getJson().toStringUtf8());
}
}
import pydgraph
import json
def main():
client_stub = pydgraph.DgraphClientStub("localhost:9080")
client = pydgraph.DgraphClient(client_stub)
query = """blahblah"""
res = client.txn(read_only=True).query(query)
print('Response: {}'.format(json.loads(res.json)))
client_stub.close()
if __name__ == '__main__':
try:
main()
except Exception as e:
print('Error: {}'.format(e))
const dgraph = require("dgraph-js");
const grpc = require("grpc");
async function main() {
const clientStub = new dgraph.DgraphClientStub("localhost:9080", grpc.credentials.createInsecure());
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.getJson()));
clientStub.close();
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
const dgraph = require("dgraph-js-http");
async function main() {
const clientStub = new dgraph.DgraphClientStub("http://localhost:8080");
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.data));
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
Nesting and parameterized cascade
The cascading nature of field selection is overwritten by a nested @cascade
.
The previous example can be cascaded down the chain as well, and be overridden on each level as needed.
For example, if you only want the “Indiana Jones movies that were produced by the same person who produced a Jurassic World movie”:
{
nodes(func: allofterms(name@en, "jones indiana")) @cascade(produced_by) {
name@en
genre @filter(anyofterms(name@en, "action adventure")) {
name@en
}
produced_by @cascade(producer.film) {
name@en
producer.film @filter(allofterms(name@en, "jurassic world")) {
name@en
}
}
written_by {
name@en
}
}
}
curl -H "Content-Type: application/dql" localhost:8080/query -XPOST -d '
blahblah' | python -m json.tool | less
package main
import (
"context"
"flag"
"fmt"
"log"
"github.com/dgraph-io/dgo/v2"
"github.com/dgraph-io/dgo/v2/protos/api"
"google.golang.org/grpc"
)
var (
dgraph = flag.String("d", "127.0.0.1:9080", "Dgraph Alpha address")
)
func main() {
flag.Parse()
conn, err := grpc.Dial(*dgraph, grpc.WithInsecure())
if err != nil {
log.Fatal(err)
}
defer conn.Close()
dg := dgo.NewDgraphClient(api.NewDgraphClient(conn))
resp, err := dg.NewTxn().Query(context.Background(), `blahblah`)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Response: %s\n", resp.Json)
}
import io.dgraph.DgraphClient;
import io.dgraph.DgraphGrpc;
import io.dgraph.DgraphGrpc.DgraphStub;
import io.dgraph.DgraphProto.Response;
import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import java.util.Map;
public class App {
public static void main(final String[] args) {
ManagedChannel channel =
ManagedChannelBuilder.forAddress("localhost", 9080).usePlaintext(true).build();
DgraphStub stub = DgraphGrpc.newStub(channel);
DgraphClient dgraphClient = new DgraphClient(stub);
String query = "blahblah";
Response res = dgraphClient.newTransaction().query(query);
System.out.printf("Response: %s", res.getJson().toStringUtf8());
}
}
import pydgraph
import json
def main():
client_stub = pydgraph.DgraphClientStub("localhost:9080")
client = pydgraph.DgraphClient(client_stub)
query = """blahblah"""
res = client.txn(read_only=True).query(query)
print('Response: {}'.format(json.loads(res.json)))
client_stub.close()
if __name__ == '__main__':
try:
main()
except Exception as e:
print('Error: {}'.format(e))
const dgraph = require("dgraph-js");
const grpc = require("grpc");
async function main() {
const clientStub = new dgraph.DgraphClientStub("localhost:9080", grpc.credentials.createInsecure());
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.getJson()));
clientStub.close();
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
const dgraph = require("dgraph-js-http");
async function main() {
const clientStub = new dgraph.DgraphClientStub("http://localhost:8080");
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.data));
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
Another nested example: “Find the Indiana Jones movie that was written by the same person who wrote a Star Wars movie and was produced by the same person who produced Jurassic World”:
{
nodes(func: allofterms(name@en, "jones indiana")) @cascade(produced_by,written_by) {
name@en
genre @filter(anyofterms(name@en, "action adventure")) {
name@en
}
produced_by @cascade(producer.film) {
name@en
producer.film @filter(allofterms(name@en, "jurassic world")) {
name@en
}
}
written_by @cascade(writer.film) {
name@en
writer.film @filter(allofterms(name@en, "star wars")) {
name@en
}
}
}
}
curl -H "Content-Type: application/dql" localhost:8080/query -XPOST -d '
blahblah' | python -m json.tool | less
package main
import (
"context"
"flag"
"fmt"
"log"
"github.com/dgraph-io/dgo/v2"
"github.com/dgraph-io/dgo/v2/protos/api"
"google.golang.org/grpc"
)
var (
dgraph = flag.String("d", "127.0.0.1:9080", "Dgraph Alpha address")
)
func main() {
flag.Parse()
conn, err := grpc.Dial(*dgraph, grpc.WithInsecure())
if err != nil {
log.Fatal(err)
}
defer conn.Close()
dg := dgo.NewDgraphClient(api.NewDgraphClient(conn))
resp, err := dg.NewTxn().Query(context.Background(), `blahblah`)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Response: %s\n", resp.Json)
}
import io.dgraph.DgraphClient;
import io.dgraph.DgraphGrpc;
import io.dgraph.DgraphGrpc.DgraphStub;
import io.dgraph.DgraphProto.Response;
import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import java.util.Map;
public class App {
public static void main(final String[] args) {
ManagedChannel channel =
ManagedChannelBuilder.forAddress("localhost", 9080).usePlaintext(true).build();
DgraphStub stub = DgraphGrpc.newStub(channel);
DgraphClient dgraphClient = new DgraphClient(stub);
String query = "blahblah";
Response res = dgraphClient.newTransaction().query(query);
System.out.printf("Response: %s", res.getJson().toStringUtf8());
}
}
import pydgraph
import json
def main():
client_stub = pydgraph.DgraphClientStub("localhost:9080")
client = pydgraph.DgraphClient(client_stub)
query = """blahblah"""
res = client.txn(read_only=True).query(query)
print('Response: {}'.format(json.loads(res.json)))
client_stub.close()
if __name__ == '__main__':
try:
main()
except Exception as e:
print('Error: {}'.format(e))
const dgraph = require("dgraph-js");
const grpc = require("grpc");
async function main() {
const clientStub = new dgraph.DgraphClientStub("localhost:9080", grpc.credentials.createInsecure());
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.getJson()));
clientStub.close();
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
const dgraph = require("dgraph-js-http");
async function main() {
const clientStub = new dgraph.DgraphClientStub("http://localhost:8080");
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.data));
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
Cascade Performance
The @cascade
directive processes the nodes after the query, but before Dgraph
returns query results. This means that all of the nodes that would normally be
returned if there was no @cascade
applied are still touched in the internal
query process. If you see slower-than-expected performance when using the
@cascade
directive, it is probably because the internal query process returns
a large set of nodes but the cascade reduces those to a small set of nodes in query
results. To improve the performance of queries that use the @cascade
directive,
you might want to use var
blocks or has
filters, as described below.
Cascade with var
blocks
The performance impact of using var
blocks is that it reduces the graph that is touched to generate the final query results.
For example, many of the previous examples could be replaced entirely using var
blocks instead of utilizing @cascade
.
The following query provides an alternative way to structure the query shown above,
“Find the Indiana Jones movie that was written by the same person who wrote a
Star Wars movie and was produced by the same person who produced Jurassic World”,
without using the @cascade
directive:
{
var(func: allofterms(name@en, "jurassic world")) {
produced_by {
ProducedBy as producer.film
}
}
var(func: allofterms(name@en, "star wars")) {
written_by {
WrittenBy as writer.film
}
}
nodes(func: allofterms(name@en,"indiana jones")) @filter(uid(ProducedBy) AND uid(WrittenBy)) {
name@en
genre {
name@en
}
}
}
curl -H "Content-Type: application/dql" localhost:8080/query -XPOST -d '
blahblah' | python -m json.tool | less
package main
import (
"context"
"flag"
"fmt"
"log"
"github.com/dgraph-io/dgo/v2"
"github.com/dgraph-io/dgo/v2/protos/api"
"google.golang.org/grpc"
)
var (
dgraph = flag.String("d", "127.0.0.1:9080", "Dgraph Alpha address")
)
func main() {
flag.Parse()
conn, err := grpc.Dial(*dgraph, grpc.WithInsecure())
if err != nil {
log.Fatal(err)
}
defer conn.Close()
dg := dgo.NewDgraphClient(api.NewDgraphClient(conn))
resp, err := dg.NewTxn().Query(context.Background(), `blahblah`)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Response: %s\n", resp.Json)
}
import io.dgraph.DgraphClient;
import io.dgraph.DgraphGrpc;
import io.dgraph.DgraphGrpc.DgraphStub;
import io.dgraph.DgraphProto.Response;
import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import java.util.Map;
public class App {
public static void main(final String[] args) {
ManagedChannel channel =
ManagedChannelBuilder.forAddress("localhost", 9080).usePlaintext(true).build();
DgraphStub stub = DgraphGrpc.newStub(channel);
DgraphClient dgraphClient = new DgraphClient(stub);
String query = "blahblah";
Response res = dgraphClient.newTransaction().query(query);
System.out.printf("Response: %s", res.getJson().toStringUtf8());
}
}
import pydgraph
import json
def main():
client_stub = pydgraph.DgraphClientStub("localhost:9080")
client = pydgraph.DgraphClient(client_stub)
query = """blahblah"""
res = client.txn(read_only=True).query(query)
print('Response: {}'.format(json.loads(res.json)))
client_stub.close()
if __name__ == '__main__':
try:
main()
except Exception as e:
print('Error: {}'.format(e))
const dgraph = require("dgraph-js");
const grpc = require("grpc");
async function main() {
const clientStub = new dgraph.DgraphClientStub("localhost:9080", grpc.credentials.createInsecure());
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.getJson()));
clientStub.close();
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
const dgraph = require("dgraph-js-http");
async function main() {
const clientStub = new dgraph.DgraphClientStub("http://localhost:8080");
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.data));
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
The performance impact of building queries with multiple var
blocks versus
using @cascade
depends on the nodes touched to reach the end results. Depending
on the size of your data set and distribution between nodes, refactoring a query
with var
blocks instead of @cascade
might actually decrease performance
if the query must touch more nodes as a result of the refactor.
Cascade with has
filter
In cases where only a small set of nodes have the predicates where @cascade
is
applied, it might be beneficial to query performance to include a has
filter
for those predicates.
For example, you could run a query like “Find movies that have a sequel whose name contains the term Star Wars" as follows:
{
nodes(func: has(sequel)) @filter(type(Film)) @cascade {
count(uid)
name@en
sequel @filter(allofterms(name@en,"Star Wars")) {
name@en
}
}
}
curl -H "Content-Type: application/dql" localhost:8080/query -XPOST -d '
blahblah' | python -m json.tool | less
package main
import (
"context"
"flag"
"fmt"
"log"
"github.com/dgraph-io/dgo/v2"
"github.com/dgraph-io/dgo/v2/protos/api"
"google.golang.org/grpc"
)
var (
dgraph = flag.String("d", "127.0.0.1:9080", "Dgraph Alpha address")
)
func main() {
flag.Parse()
conn, err := grpc.Dial(*dgraph, grpc.WithInsecure())
if err != nil {
log.Fatal(err)
}
defer conn.Close()
dg := dgo.NewDgraphClient(api.NewDgraphClient(conn))
resp, err := dg.NewTxn().Query(context.Background(), `blahblah`)
if err != nil {
log.Fatal(err)
}
fmt.Printf("Response: %s\n", resp.Json)
}
import io.dgraph.DgraphClient;
import io.dgraph.DgraphGrpc;
import io.dgraph.DgraphGrpc.DgraphStub;
import io.dgraph.DgraphProto.Response;
import io.grpc.ManagedChannel;
import io.grpc.ManagedChannelBuilder;
import java.util.Map;
public class App {
public static void main(final String[] args) {
ManagedChannel channel =
ManagedChannelBuilder.forAddress("localhost", 9080).usePlaintext(true).build();
DgraphStub stub = DgraphGrpc.newStub(channel);
DgraphClient dgraphClient = new DgraphClient(stub);
String query = "blahblah";
Response res = dgraphClient.newTransaction().query(query);
System.out.printf("Response: %s", res.getJson().toStringUtf8());
}
}
import pydgraph
import json
def main():
client_stub = pydgraph.DgraphClientStub("localhost:9080")
client = pydgraph.DgraphClient(client_stub)
query = """blahblah"""
res = client.txn(read_only=True).query(query)
print('Response: {}'.format(json.loads(res.json)))
client_stub.close()
if __name__ == '__main__':
try:
main()
except Exception as e:
print('Error: {}'.format(e))
const dgraph = require("dgraph-js");
const grpc = require("grpc");
async function main() {
const clientStub = new dgraph.DgraphClientStub("localhost:9080", grpc.credentials.createInsecure());
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.getJson()));
clientStub.close();
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
const dgraph = require("dgraph-js-http");
async function main() {
const clientStub = new dgraph.DgraphClientStub("http://localhost:8080");
const dgraphClient = new dgraph.DgraphClient(clientStub);
const query = `blahblah`;
const response = await dgraphClient.newTxn().query(query);
console.log("Response: ", JSON.stringify(response.data));
}
main().then().catch((e) => {
console.log("ERROR: ", e);
});
By using a has
filter in the root function instead of type(Movie)
, you can
reduce the root graph from 275,195
nodes down to 7,747
nodes. Reducing the
root graph before the post-query cascade process results in a higher-performing
query.